Efficient MCMC estimation of discrete distributions
نویسندگان
چکیده
In this paper we propose an efficient Markov chain Monte Carlo (MCMC) method for estimation of discrete distributions by solving an appropriate system of linear equations. We call the estimator the equation-solving estimator. Our numerical results show that the new estimator makes significant improvements over the conventional frequencyMCMCestimator in terms of accuracy of the estimates. The new estimator can be used in Bayesian model comparison problems. © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملRetrospective sampling in MCMC with an application to COM-Poisson regression
The normalisation constant in the distribution of a discrete random variable may not be available in closed form; in such cases the calculation of the likelihood can be computationally expensive. Approximations of the likelihood or approximate Bayesian computation (ABC) methods can be used; but the resulting MCMC algorithm may not sample from the target of interest. In certain situations one ca...
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملBayesian analysis of multivariate stable distributions using one-dimensional projections
In this paper we take up Bayesian inference in general multivariate stable distributions. We exploit the representation of Matsui and Takemura (2009) for univariate projections, and the representation of the distributions in terms of their spectral measure. We present efficient MCMC schemes to perform the computations when the spectral measure is approximated discretely or, as we propose, by a ...
متن کاملComparison of two Markov chain Monte Carlo (MCMC) methods
As the world advances, statisticians/mathematicians are being involved into more and more complex surveys for the development of society and human beings. Consequently, these complex survey data requires complicated and high-dimensional models for final analysis. We need sophisticated and efficient statistical/mathematical tools for estimation and prediction of these models. Frequently, we simu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 49 شماره
صفحات -
تاریخ انتشار 2005